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I. EXPERIMENTAL FACTS

In magnetic atom (typically Fe) dopped non-magnetic metals (like Mo, Nb).

A. Minimum of Resistance

II. EFFECTIVE HAMILTONIAN

A. Impurities in Mott Insulator: Anderson Model

Anderson proposed his model

H = Hf +Hd +Hcorrelation +Hhybrid,

=
∑
kσ

εkc
†
kσckσ +

∑
σ

εdd
†
σdσ + Und↑nd↓ +

∑
kσ

Vk
(
c†kσdσ + h.c.

)
(1)

in study of localized moments early in [1]. This is an appropriate description of localized and magnetic d-state
impurities and s-state free itinerate electrons because mean field study exhibits a magnetic phase for impurities,
which is demanded for experimental observations.

B. Schrieffer-Wolff Transformation to Single-occupied Effective Hamiltonian

But mean-field (or Hartree-Fock) methods fails to grab the correct low-energy effective physics for such a strongly-
correlation system. If we narrow our discussion to the effect of single impurity, then like the case in Heisenberg
model, superexchange mechanism occurs at half-filling and large-U limit [2, 3]. But there is no confinement on the
number of occupation in origianl Anderson model, so certainly we need to develop a new method, projecting out the
unphysical empty and doubly occupied Hilbert space to find out the proper effective Hamiltonian for Kondo physics.
And Schrieffer-Wolff transformation [4] is the standard technique.

First of all, we can re-arrange original Anderson Hamiltonian by the number of impurity occupation

Hij ≡ PiHPj ,
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where P2 = nd↑nd↓, P1 = nd↑(1−nd↓)+nd↓(1−nd↑), and P0 = 1−P1 −P2. Fortunate enough, without cumbersome
commutator calculations, for (1) without hybridized term we can just substitute the number of impurities, obtaining

H00 ≡ P0HP0 =
∑
kσ

εkc
†
kσckσ, (2a)

H11 ≡ P1HP1 =
∑
kσ

εkc
†
kσckσ + εd, (2b)

H22 ≡ P2HP2 =
∑
kσ

εkc
†
kσckσ + 2εd + U, (2c)

while for the contribution from hybridized term,

H01 ≡ P0HP1 =
∑
kσ

Vkc
†
kσdσndσ(1− ndσ̄) (3a)

H12 ≡ P1HP2 =
∑
kσ

Vkc
†
kσdσndσndσ̄ (3b)

H02 ≡ P0HP2 = 0. (3c)

The last term vanishes because hybridization term only involves single-particle creation and annihilation procedure.
So in the basis of {P0|ψ⟩, P1|ψ⟩, P2|ψ⟩}, Anderson Hamiltonian can splitted by blocks

H =

 H00 H01 0
H10 H11 H12

0 H21 H22

 . (4)

Treating the off-diagnal terms as pertubation (because tunnelings between subspcaces with distinct number of occu-
pation is extremely suppressed by large-U limit), then our task is to diagonalize (4) and project out empty and doubly
occupied degree of freedoms.

Instead of considering the original Hamiltonian H ≡ H0 + V , where in our problem, H0 ≡ diag(H00,H11,H22) and

V ≡

 0 H01 0
H10 0 H02

0 H20 0

 ,

we try to find a canonical transformation

H̃ ≡ eSHe−S = H + [S,H ] +
1

2!
[S, [S,H ]] + · · ·

= H0 + V + [S,H0] + [S, V ] +
1

2!
[S, [S,H0 + V ]] + · · · (5)

such that

V + [S,H0] ≡ 0, (6)

where to keep the unitarity S ≡ −S†. Then up to the second order we are left with

H̃(2) = H0 + [S, V ] +
1

2
[S, [S,H0]] = H0 +

1

2
[S, V ]. (7)

What we have done is to rearrange the perturbation series so that the odd-time transition (which is
suppressed by large-U limit) is moved behind the even-time transition (which keep the number of
occupation), and the abrupt truncation is able to tell us the correct low-energy physics for gapped
system (this procedure can also be understood in the sense of renormalization).1

Schrieffer and Wolff Ansatzed the form of canonical transformation in their original work [4] through observation,
whose coefficients can determined by requirement (6). Lengthy calculation details are recoverd in [5]. Here, instead,

1 Thanks to the online discussion with Ju-Ge Li, see https://www.zhihu.com/question/272140639/answer/366066720.



4

we try to give a systematic way to solve S. This exploration is valuable demonstrating the equivalence of different
approaches obtaining the effective Hamiltonian and can be easily generalized for other strongly-correlated spin system
in future research.

Noting the fact that any form of matrics should keep the form after commuting with an diagonal matrics. So from
equation (6) we can write

S =

 0 s1 0

−s†1 0 s2
0 −s†2 0

 ,

giving two indepent equations (note that each component of S is still an many-body operator)

s1H11 −H00s1 = H01 (8a)
s2H11 −H22s2 = H12 (8b)

Operator equations (8a) and (8b) are hard to solve unless we acting them on some many-body states. Suppose
many-body state has energy E, i.e., H|ψ⟩ = E|ψ⟩, then acting (8a) and (8b) on |ψ1⟩ ≡ P1|ψ⟩, respectively, we have

s1 = − 1

E −H00
H01, s2 = −H12

1

H22 − E
. (9)

So the effective Hamiltonian (up two second order, in single-occupied subspace) is

H
(2)
eff ≡ P1

(
H0 +

1

2
[S, V ]

)
P1

= P1

H0 +
1

2

 s1H10 −H01s
†
1 0 s1H12 +H01s2

0 −s†1H01 −H10s1 + s2H21 +H12s
†
2 0

−s†2H01 −H21s
†
2 0 −s†2H12 +H12s2

P1

= H11 +H10
1

E −H00
H01 +H12

1

E −H22
H21, (10)

or more explicitly

H
(2)
eff =

∑
k

εkc
†
kσckσ

+
∑
kk′σσ′

V ∗
k Vk′

(
(1− ndσ̄)ndσdσckσ

1

E −H00
c†k′σ′d

†
σ′ndσ′(1− ndσ̄′) + dσndσndσ̄c

†
kσ

1

E −H22
ck′σ′ndσ̄′ndσ′d†σ′

)
.

(11)

To prepare for further practicable calculation of spin Hamiltonian, perturbation and truncation on the free Green
operator G00 ≡ 1/(E −H00) and G22 ≡ 1/(E −H22) must be performed. Since

Hn
00c

†
kσ ≡

(∑
pµ

εpc
†
pµcpµ

)n
c†kσ =

(∑
pµ

εpc
†
pµcpµ

)n−1∑
pσ

εpc
†
pµ(δµσδp,k − c†kσcpµ)

=

(∑
pµ

c†pµcpµ

)n−1

c†kσ

(
εk +

∑
pσ

c†pµcpσ

)
= · · · = c†kσ

(
εk +

∑
pσ

c†pµcpσ

)n
,

and similarly

Hn
22ckσ ≡

(∑
pµ

εpc
†
pµcpµ + 2εd + U

)n
ckσ =

(
−εk +

∑
pµ

εpc
†
pµcpµ + 2εd + U

)n
,

terms in (10) containing Green operators can be simplified as

1

E −H00
c†kσ ≡ 1

E

(
1− H00

E

)−1

c†kσ =
1

E

∞∑
n=0

Hn
00

En
c†kσ =

c†kσ
E

∞∑
n=0

(εk +H00)
n

En
=
c†kσ
E

1

1− εk +H00

E
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= c†kσ
1

E −H00 − εk
≡ c†kσ

1

E −H11 − εk + εd
=

c†kσ
εd − εk

(
1 +

E −H11

εd − εk

)−1

≃
c†kσ

εd − εk
+O(|E −H11|2),

and similarly

1

E −H22
ckσ = ckσ

1

E −H22 + εk
≡ ckσ

1

E −H11 + εk − εd − U
=

ckσ
εk − U − εd

(
1 +

E −H11

εk − U − εd

)−1

≃ ckσ
εk − U − εd

+O(|E −H11|2),

where we replace H00 and H22 with H11 because by our construction H11 dominant the contribution of eigen-energy E
because empty and doubly occupied configurations are highly suppressed. Therefore, we come to the final expression
of the effective Hamiltonian up to the second order approximation for single-occupied configurations

H
(2)
eff =

∑
kσ

εkc
†
kσckσ +

∑
kk′σσ′

V ∗
k Vk′

(
(1− ndσ̄)ndσd

†
σdσ′ndσ′(1− ndσ̄′)

εd − εk′
ckσc

†
k′σ′ +

dσndσ̄ndσndσ′ndσ̄′d
†
σ′

U + εd − εk′
c†kσck′σ′

)

=
∑
kσ

εkc
†
kσckσ +

∑
kk′σσ′

V ∗
k Vk′

(
d†σdσ′

εd − εk′
ckσc

†
k′σ′ +

dσd
†
σ′

U + εd − εk′
c†kσck′σ′

)
, (12)

where in the second line we implement the single-occupied condition so that the only non-vanishing term for each
part is equivalent to those dropping all terms containing particle numbers.

C. Spin Hamiltonian: sd Model

We will see in this section that spacial degree of freedom in effective Hamiltonian (12) is actually projected out.
So we should end up with a spin Hamiltonian. Introducing the spin operator for free electrons and impurities in the
language of second quantization,

Skk′ ≡
∑
αβ

c†kα
σαβ
2
ckβ , Sd ≡

∑
µν

d†µ
σµν
2
dν ,

we have the identity

2Skk′ · Sd ≡
1

2

∑
αβµν

c†kαckβd
†
µdν(2δανδβµ − δαβδµν) =

∑
αβ

c†kαck′βd
†
βdα − 1

2

∑
αβ

c†kαck′αd
†
βdβ . (13)

So up to some constant, effective Hamiltonian (12) becomes

H
(2)
eff =

∑
kσ

εkc
†
kσckσ +

∑
kk′σσ′

V ∗
k Vk′

(
d†σdσ′

εd − εk′
(δkk′δσσ′ − c†k′σ′ckσ) +

δσσ′ − d†σ′dσ
U + εd − εk′

c†kσck′σ′

)

=
∑
kσ

εkc
†
kσckσ +

∑
k

V ∗
k Vk

εd − εk

∑
σ

d†σdσ −
∑
kk′σσ′

V ∗
k Vk′

d†σdσ′c†k′σ′ckσ
εd − ε′k

+
∑
kk′σ

V ∗
k Vk′

U + εd − ε′k
c†kσck′σ′ −

∑
kk′σσ′

V ∗
k Vk′

d†σ′dσc
†
kσck′σ′

U + εd − ε′k
.

Since
∑
σ d

†
σdσ ≡ 1, the second terms in the above expression is just a entire shift of energy so can be dropped. Thus

after exchange the dummy label of k and k′ in the third term and re-arrange them, we obtain

H
(2)
eff =

∑
kσ

εkc
†
kσckσ +

∑
kk′

V ∗
k Vk′

U + εd − εk
c†kσck′σ′ −

∑
kk′

(
V ∗
k′Vk

εd − εk
+

V ∗
k Vk′

U + εd − εk′

)
c†kσck′σ′d†σ′dσ

=
∑
kσ

εkc
†
kσckσ +

∑
kk′

V ∗
k Vk′

U + εd − εk
c†kσck′σ′
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−
∑
kk′

V ∗
k Vk′

(
V ∗
k′Vk

εd − εk
+

V ∗
k Vk′

U + εd − εk

)(
2Skk′ · Sd +

1

2

∑
σσ′

c†kσck′σd
†
σ′dσ′

)

=
∑
kσ

εkc
†
kσckσ −

∑
kk′

(
V ∗
k′Vk

εd − εk
+

V ∗
k Vk′

U + εd − εk

)
2Skk′ · Sd −

∑
kk′

(
V ∗
k′Vk

εd − εk
− V ∗

k Vk′

U + εd − εk

)
1

2

∑
σ

c†kσck′σ

≡
∑
kσ

εkc
†
kσckσ −

∑
kk′

Jkk′Skk′ · Sd −
∑
kk′σ

Kkk′c
†
kσck′σ. (14)

Since both U and εd greatly excess the typical excitation energy εk, we can safely neglect the momentum
dependence of coupling coefficients Jkk′ and Kkk′ and treat them as constants. After this the third
scattering term in (14) can be absorbed in single-particle excitation energy and renormalized the
dispersion relation. Lastly, we end up with the celebrated sd-Hamiltonian

Hsd =
∑
kσ

εkc
†
kσckσ +

∑
kk′

JSkk′ · Sd . (15)

III. RESISTANCE MINIMUM DUE TO IMPURITY SCATTERING

A. Warm up: Green Function and Relaxation Time

Given a general impurity Hamiltonian Himp, the single-particle Green function (after averaging of impurities2)

Gn(k,k
′) ≡ ⟨⟨ψ†

n(k)ψn(k
′)⟩⟩imp ≡

〈∫
D(ψ̄, ψ) ψ̄(k)ψ(k′)e−

1
β

∑
iωn

∑
p ψ̄(−iωn−µ+Ĥ0+Ĥimp)ψ

〉
imp

≡
〈

δ

δJ(k)

δ

δJ̄(k′)

∣∣∣∣
J=J̄=0

Z[J, J̄ ]

〉
imp

, (16)

where

Z[J, J̄ ] ≡
∫

D(ψ̄, ψ) exp

− 1

β

∑
iωn,p

ψ̄(−iωn − µ+ Ĥ0 + Ĥimp) + Jψ̄ + J̄ψ

 .
After the functional derivative in (16) we come to the interactive single-particle Green operator

Ĝn =

〈
1

Ĝ−1
0 + Ĥimp

〉
imp

, (17)

or equivalently

Ĝn =

〈
1

1− Ĝ0Ĥimp
Ĝ0

〉
imp

≡
〈
Ĝ0 + Ĝ0TnĜ0

〉
imp

, (18)

where we introduce the T -matrix (since impurity average only takes for Ĥimp)

Tn ≡
〈
Ĥimp + ĤimpĜ0Ĥimp + ĤimpĜ0ĤimpĜ0Ĥimp + · · ·

〉
imp

. (19)

Under the basis of momentum, perturbative series of Green function Gkk′ ≡ ⟨k|Ĝn|k′⟩ in (18) can be arranged to
form the Dyson series, as is shown below

= +

 + + · · ·


2 Impurity-average should be taken at the last for evaluation of arbitrary physical observables.
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+

 + +



+

 + + · · ·

+ · · · ,

which, up to single-loop level, can be re-arranged as celebrated Dyson equation

= + ×

 +

× ,

or mathematically,

Gk,k′ = (G0)k + (G0)kΣk,k′′Gk′,k′′ , (20)

where the irreducible self-energy operator

Σk,k′ ≡ ⟨k|Tn|k′⟩ ≡

 +


is the single-loop level of T-matrix.

Particularly, since most impurity scattering is momentum-conserving (which is also the case of our s-d Hamiltonian),
Σk,k′ = Σkδk,k′ , so Dyson equation (20) can be expressed explicitly

G(iωn,k) =
1

(G0)
−1
k − Σk

≡ 1

iωn − ξk − Σk
. (21)

Besides, with the Dyson equation of retarded and advanced T-matrix (which can be easily seen from equation (19))

TR/A =

〈
Himp

1

1−G
R/A
0 Himp

〉
imp

,

one immediately has

TA(GR0 −GA0 )T
R ≡ Himp

1

1−GA0 Himp

(
(H−1

imp −GA0 )− (H−1
imp −GR0 )

)
Himp

1

1−GR0 Himp

= TR − TA.

Because

⟨k′|GR0 −GA0 |k′⟩ ≡ 2iδ

(εk − εk′)2 + δ2
= 2πiδ(εk − εk′).

Analytical properties tell that the imaginary part of the retarded self-energy operator (in real time
formalism) gives half of the scattering rate3

ImΣR = − 1

2τ
.

3 For more explanation and discussion, see [3] and [6].
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Therefore the relaxation time can be calculated by T-matrix element as following

1

2τ
≡ ImΣR(εk,k) ≡ Im⟨k|TR|k⟩ = π

〈∑
k′

|⟨k′|TR|k⟩|2δ(εk − εk′)

〉
imp

, (22)

where we utilize the identity ReΣR = ReΣA, ImΣR = −ImΣA and recover the (single) impurity average.

B. Logarithm Contribution from Spin-flip Process

Relation of Conductance and relaxation time (of impurity scattering) is given by the famous Drude formula4

σ =
ne2τ

m
. (23)

So to reveal the high-order correction of the temperature dependence of resistence, our left tasks are to evaluate the
matrix element of T -matrix. More precisely, in our situation, the scattering rate (22) is written as

Γ ≡ 1

τ
= 2π

〈∑
k′,σ′

|⟨k′, σ′|TR|k, σ⟩|2δ(εk − εk′)

〉
ms

(24)

where ⟨· · · ⟩ms ≡ trms(· · · )/trms(1) = trms(· · · )/(2S + 1)ℏ2 and TR is given perturbatively from (19). Scattering
processes become much more clear if the Hamiltonian is split to non-spin-flip part (Szd) and spin-flip parts (S±

d )

Himp = J
∑
kk′

Sk,k′ · Sd ≡ J
∑
k1,k2

[(
a†k1↑ak2↑ − a†k1↓ak2↓

)
Szd + a†k1↓ak2↑S

+
d + a†k1↑ak2↓S

−
d

]
. (25)

So to the lowest order of T -matrix where TR = Himp, only spin flipping and non-flipping processes will be involved

1

2τ
=

msms Szd

k, σ k′, σ

+
ms ± 1ms S±

d

k, σ k′, σ̄

=
πJ2

(2S + 1)ℏ2
∑
ms

∑
k′

[
2|⟨ms|Szd |ms⟩|2 +

(
|⟨ms − 1|S+

d |ms⟩|2 + |⟨ms + 1|S−
d |ms⟩|2

)]
δ(εk − εk′)

=
πJ2n

(2S + 1)ℏ2
∑
ms

[
2ℏ2m2

s + ℏ2
(
S(S + 1)− (m− 1)m

)
+ ℏ2

(
S(S + 1)− (m+ 1)m

)]
=

πJ2n

2S + 1

∑
ms

(S(S + 1) + 2ms) = πJ2nS(S + 1), (26)

where 2 in the first line comes from wick contraction of itinerate fermionic operators, and the DOS n is a constant
(for our itinerate electrons |k| ≃ kF ).

Clearly (26) has no temperature dependence so it cannot contribute to the behavior of resistance minimum. In
fact, one can easily see that the only possible involvement of temperature comes from the fermionic distrbution of
intermediate states. So only if we take the free Green function into account, i.e., start with the second order of the
perturbative series of TR, can we have the desired temperature dependence.

4 Strickly speaking, one need to prove by Kubo formula that this semi-classical equation still work for our deliberate consideration of
quantum spin impurities. The complete proof is given in [7].
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But things becomes dramatically complex when we go to the second order. As is seen below, there will be six
diagrams (including in and out spin degenerancy) contributing to relaxation time5

msms ms SzdSzd

q, σ
k, σ k′, σ

+
msms ms SzdSzd

q, σ

k, σ k′, σ

+
ms ms + 1 msS−

dS+
d

q, σ̄
k, σ k′, σ

+
ms ms + 1 msS−

dS+
d

q, σ̄

k, σ k′, σ

+
ms ms − 1 msS+

dS−
d

q, σ̄
k, σ k′, σ

+
ms ms − 1 msS+

dS−
d

q, σ̄

k, σ k′, σ

. (27)

Although there are up to six feynman diagrams waiting to be calculated, there contraction rules are similar to each
other. Let us taking one typical process of from state |k, ↑⟩ to |k′, ↑⟩ as an example

msms ms SzdSzd

q, ↑
k, ↑ k′, ↑

+
msms ms SzdSzd

q, σ

k, ↑ k′, ↑

= J2

〈
Ω

∣∣∣∣∣ck↑ ∑
p1p2p3p4

(
c†p1↑cp2↑ − c†p1↓cp2↓

)
SzdĜ0

(
c†p3↑cp4↑ − c†p3↓cp4↓

)
Szdc

†
k′↑

∣∣∣∣∣Ω
〉
,

where different colors are utilized to emphase the physical operators that creation and annihilation operators belongs
to. Since we are considering irreducible self-energy operators, all the factorized feynman digrams
(bubble diagrams) coming from contraction within the same physical operators should be excluded
from our calculation. These vacuum contribution will be absorbed in the normalization of path integral.
Also, T -matrix only focus on the contribution that |k, σ⟩ ̸= |k′σ′⟩ (the trivial divergent part of |k, σ⟩ = |k′, σ′⟩ is
included in definition of S-matrix, rather than our T -matrix6) so we use the same color to avoid contraction between
them. And free Green function Ĝ0 ≡ 1/(εk − Ĥ + iδ) depends on the state after arrange of the order of operators for
contraction. Therefore, the only non-vanishing contraction is

J2
∑

p1p2p3p4

⟨Ω|ck↑c†p1↑cp2↑S
z
dĜc

†
p3↑cp4↑S

z
dc

†
k′↑|Ω⟩ = J2

∑
p1p2p3p4

⟨ck↑c†p1↑⟩S
z
d

⟨cp2↑c
†
p3↑⟩

εk − εp2 + iδ
Szd⟨cp4↑c

†
k′↑⟩

+ J2
∑

p1p2p3p4

⟨ck↑c†p3↑⟩S
z
d

⟨c†p1↑cp4↑⟩
εk − εp4 + iδ

Szd⟨cp2↑c
†
k′↑⟩

= J2
∑
p

1− f(εp)

εk − εp + iδ
Szd + J2

∑
p

f(εp)

εk − εp + iδ
Szd , (28)

which is not temperature-dependent again. By replacing Szd by S±, and dropping all the temperature-independent
terms, we arrive at the final simple expression

⟨k, σ|TR(2)|k′, σ⟩ temp.-depend
========== −J2

∑
p

[S+, S−]
f(εp)

εk − εp + iδ
= −J2

∑
p

f(εp)

εk − εp + iδ
2Szd

5 One can easily check that terms like ⟨|Ŝz
dĜ0Ŝ

±
d |⟩ vanish because single creation or annihilation operator will survive after contraction,

whose expectation value is always zero.
6 If you are not familiar with this, see [8] for more details.
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= −2J2Sz

(
nP.V.

∫ D

−D
dεp

f(εp)

εk − εp + iδ
− iπn

)
= 2J2nSzd ln

∣∣∣∣ DkBT
∣∣∣∣ (29)

for εk ≪ D and εk − εF ≃ kBT . Therefore, after plugging in (22), performing the integral over k′ and taking the
trace of impurity spins, we arrive at the final single-loop correction on the relaxation time

1

2τ
= πnJ2S(S + 1)

(
1 + 2nJ ln

∣∣∣∣ DkBT
∣∣∣∣)2

≃ πnJ2S(S + 1)

(
1 + 4nJ ln

∣∣∣∣ DkBT
∣∣∣∣+ · · ·

)
. (30)

And thus the resistance will contain a temperature-dependent and logarithmically divergent term ln |D/kBT | as well
(plus the phonon-contribution7 that is proportional to T 5)

R(T ) ∼ AT 5 +R(0)

(
1− 4nJ ln

∣∣∣∣kBTD
∣∣∣∣+ · · ·

)
. (31)

This logarithmical correction will bend up the curve when decreasing the temperature for antiferromagnetic coupling
(but not ferromagnetic coupling) so can well-explain the existence of resistence minimum for alloys [9].

IV. KONDO PROBLEM

A. Poor Man's Scaling: Renormalization

One may be satisfied with our logarithmical correction (31) that matches well with experiments. However, this is
still not the end. If we continue decreasing the temperature, equation (31) tells us that the resistance of alloy will
goes to infinity at zero temperature, which is thoroughly unacceptable.

But to explain the minimum of resistance, we do need this logarithmical-divergent term. So here comes the
contradiction: the logarithmical-divergent term works well in low energy (small T ) region, but become
untrusted when we go further to lower energy scale. But to those having deep insights of condensed matter
physics like Anderson, contradiction can also be understood as some hints of deep physics behind. Actually, it tells
us that there will be one critial temperature or critical energy scale under which our perturbative
treatment of scattering processes break down. And because perturbation theory is built on the assumption of
small coupling constant, the only conclusion we can draw is that the coupling constant must run with the scaling
factor until divergence when we lower the temperature. This is nothing but the concept of renormalization
group flow.

B. Schrieffer-Wolff Transformation Again

In order to visualize the low-energy behavior of coupling constants, we need to scaling the conduction band into two
parts (−D/b,D/b) and (−D,−D/b] ∪ [D/b,D) for b > 1 and decomposing the many-body Hilbert spcae into three
kinds8 with the same notation (but different meaning) in the first section: ψ1 has no conduction electron or hole in
the upper and lower edge, ψ0 has at least one hole in the lower edge, and ψ2 has at least one conduction electron in
the upper edge.

For further discussion Anderson consider a generalized anisotropic s-d Hamiltonian in his original work in [10]

Hsd =
∑
kk′

(
JzS

z(c†k↑ck′↑ − c†k↓ck′↓) + J+S
+c†k↓ck′↑ + J−S

−c†k↑ck′↓

)
. (32)

Scaling of the momentum space will result in the seperation of summation∑
k

≡
∑

|k|∈(0,D/b)

+
∑

|k|∈(D/b,D)

≡
∑
kℓ

+
∑
kh

.

7 This can be derived from Boltzman equation by taking into account all the eletron-phonon scattering processes. See chapter 11 of [5]
for details.

8 Because doubly excited intermediate states are of high order
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So (32) is splitted as

Hsd-ℓℓ =
∑
kℓk′ℓ

(
JzS

z(c†kℓ↑ck′ℓ↑ − c†kℓ↓ck′ℓ↓) + J+S
+c†kℓ↓ck′ℓ↑ + J−S

−c†kℓ↑ck′ℓ↓

)
,

Hsd-ℓh =
∑
kℓk′h

(
JzS

z(c†kℓ↑ck′h↑ − c†kℓ↓ck′h↓) + J+S
+c†kℓ↓ck′h↑ + J−S

−c†kℓ↑ck′h↓

)
,

Hsd-hℓ =
∑
khk′ℓ

(
JzS

z(c†kh↑ck′ℓ↑ − c†kh↓ck′ℓ↓) + J+S
+c†kh↓ck′ℓ↑ + J−S

−c†kh↑ck′ℓ↓

)
,

Hsd-hh =
∑
khk′h

(
JzS

z(c†kh↑ck′h↑ − c†kh↓ck′h↓) + J+S
+c†kh↓ck′h↑ + J−S

−c†kh↑ck′h↓

)
.

Since Hamiltonian (32) relates only ψ0 and ψ1 subspace and ψ2 and ψ1 subspace, the effective Hamiltonian should be
entirely the same as (10) after Schrieffer-Wolff transformation, where

H11 = H0 +Hsd-ℓℓ, H00 = H0 +Hsd-hh for kh ∈ (−D,−D/b), H22 = H0 +Hsd-hh for kh ∈ (D/b,D)

and
H01 = Hsd-hℓ for kh ∈ (−D,−D/b), H10 = Hsd-ℓh for kh ∈ (−D,−D/b)
H21 = Hsd-hℓ for kh ∈ (D/b,D), H12 = Hsd-ℓh for kh ∈ (D/b,D).

Here H0 is the kinetic term of free itinerate electrons H0 =
∑
kℓ
εkℓc

†
kℓ
ckℓ . To the lowest order of Green function, we

can safely approximate
H11 = H00 = H22 = H0 +O(J).

C. Single-loop β-function and Asymptotic Freedom

We will show in this section that the effective Hamiltonian has exactly the same form of the second-order
spin scattering processes (just a coincidence).

Let us first focus on the spin scattering process that keep the spin of impurity unchanged, i.e., the two spin-flip and
non spin-flip processes.

H12
1

E −H22
H21 = JzJz

∑
kℓ1k′h1

Sz(c†kℓ1↑ck′h1↑ − c†kℓ1↓ck′h1↓)
1

E −H22

∑
k′h2kℓ2

Sz(c†k′h2↑
ckℓ2↑ − c†kh2↓ck′ℓ2↓)

+ J−J+
∑
kℓ1k′h1

S−a†kℓ1↑ak′h1↓
1

E −H22

∑
k′h2kℓ2

S+a†k′h2↓
akℓ2↑

+ J+J−
∑
kℓ1k′h1

S+a†kℓ1↓ak′h1↑
1

E −H22

∑
k′h2kℓ2

S−a†k′h2↑
akℓ2↓. (33)

Moving the creation and annihilation pair on the right hand side to the left hand side of free Green function. Then
with the same trick we proved before9, because

[H0, a
†
k′h2µ

akℓ2ν ] = a†k′h2µ
akℓ2ν(εk′h2

− εkℓ2) ≃ a†k′h2µ
akℓ2ν(D − εkℓ2)

and in ψ1 subspace the band edge is empty10 so that ak′h1µ1
a†k′h2µ2

= δk′h1,k
′
h2
δµ1,µ2

after projection, we are left with

H12
1

E −H22
H21 = J2

z (S
z)2

∑
kℓ1kℓ2

∑
kh

c†kℓ1↑ckh↑
1

E −D + εkℓ2
c†kh↑ckℓ2↑ + J2

z (S
z)2

∑
kℓ1kℓ2

∑
kh

c†kℓ1↓ckh↓
1

E −D + εkℓ2
c†kh↓ckℓ2↓

9 Let me remind you about what I have proved in the first section. If [H0, A] = λA, then
1

E −H0
A = A

1

E − λ−H0
.

10 Even without writting the projection explicitly, one must be clear about this.
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+ J−J+

(
S−S+

∑
kℓ1kℓ2

∑
kh

c†kℓ1↑ckh↓
1

E −D + εkℓ2
c†kh↓ckℓ2↑ + S+S−

∑
kℓ1kℓ2

∑
kh

c†kℓ1↓ckh↑
1

E −D + εkℓ2
c†kh↑ckℓ2↓

)

=
3J2
z

4

∑
kℓ1kℓ2

∑
σ

c†kℓ1σckℓ2σ

E −D + εkℓ2
× n0D

(
1− 1

b

)

+ J−J+

{(
1

2
− Sz

) ∑
kℓ1kℓ2

c†kℓ1↑ckℓ2↑

E −D + εkℓ2
+

(
1

2
+ Sz

) ∑
kℓ1kℓ2

c†kℓ1↓ckℓ2↓

E −D + εkℓ2

}
× n0D

(
1− 1

b

)
(34)

because S2
z =

3

4
, S−S+ =

1

2
− Sz and

∑
kh

1 ≡
∫ D

D/b

dε n(ε) = n0D

(
1− 1

b

)
,

where we approximate the DOS as a constant function within our band as we have done in Kondo effects. Similarly,
for another term

H10
1

E −H00
H01 =

3J2
z

4

∑
kℓ1kℓ2

∑
σ

c†kℓ1σckℓ2σ

E −D − εkℓ2
× n0D

(
1− 1

b

)

+ J−J+

{(
1

2
− Sz

) ∑
kℓ1kℓ2

c†kℓ1↑ckℓ2↑

E −D − εkℓ2
+

(
1

2
+ Sz

) ∑
kℓ1kℓ2

c†kℓ1↓ckℓ2↓

E −D − εkℓ2

}
× n0D

(
1− 1

b

)
. (35)

Ditto for the the other single spin-flip processes that contribute to effective Hamiltonian, which gives

H12
1

E −H22
H21 = −JzJ+

2

∑
kℓ1kℓ2

∑
σ

c†kℓ1σckℓ2σ

E −D − εkℓ2
× n0D

(
1− 1

b

)
, (36)

H10
1

E −H00
H01 = −3JzJ−

2

∑
kℓ1kℓ2

∑
σ

c†kℓ1σckℓ2σ

E −D − εkℓ2
× n0D

(
1− 1

b

)
. (37)

Dropping all the trivial shift on effective Hamiltonian (which can be absorbed in the measure of path integral) and
recognizing the corresponding terms, finally we obtain

J±(b) = J± + JzJ±nD

(
1− 1

b

)(
1

E −D + εk
+

1

E −D − εk

)
, (38)

Jz(b) = Jz + J+J−nD

(
1− 1

b

)(
1

E −D + εk
+

1

E −D − εk

)
. (39)

Since we are interested in low-energy behavior of effective Hamiltonian, both the kinetic enregy of itinerate electron
E and the internal excitation energy εk are negligible comparing with the band width. Therefore, the beta-function is

β(J±) ≡
dJ±
d ln b

= 2nJzJ±, β(Jz) ≡
dJz
d ln b

= 2nJ+J−, (40)

whose integral curve

J2
z − J2

± = const (41)

is shown on the figure below. It's clear that for isotropic antiferromagnetic coupling Jz = J± ≡ J we are interested
in, J runs to infinity when we lower the temperature, or energy scale, or dually enlarge the lengh scale

dJ

d ln b
= 2nJ2 =⇒ J(b) =

J0
1− 2nJ0 ln b

≡ J0

1 + 2nJ(0) ln
D(b)

D

. (42)
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FM AFM

Jz

J±

FIG. 1. RG Flow of Coupling Constants.

Such phenomenon that coupling constant diverges at UV cutoff and vanishes at IR cutoff, shares exactly
the same properties as quark-hadron confinement obseved in QCD experiments11, ferromagnetic coupling constant in
(1+1)D non-linear sigma model by Polyakov [12], non-abelian bosonization of Wess-Zumino-Witten model [13] and
so on. So the concept of asymptotic divergence penetrate every corner of physics. That's why we need to learn this.
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